
Binghamton

University

CS-220

Spring 2016

More x86 Code
Computer Systems Sections 3.3-3.6

See Also:

http://www.cs.binghamton.edu/~tbartens/CS220_Spring_2016/examples/xmp_x86

http://www.cs.binghamton.edu/~tbartens/CS220_Spring_2016/examples/xmp_x86/

Binghamton

University

CS-220

Spring 2016

If/Then/Else

int myfunc(int a,int b) {

int c;

if (a>b) c = a;

else c = b;

return c;

}

pushl %ebp

movl %esp, %ebp

subl $16, %esp

movl 8(%ebp), %eax

cmpl 12(%ebp), %eax

jle .L2

movl 8(%ebp), %eax

movl %eax, -4(%ebp)

jmp .L3

.L2:

movl 12(%ebp), %eax

movl %eax, -4(%ebp)

.L3:

movl -4(%ebp), %eax

leave

ret

Memory

b x0000 0004

a x0000 0003

(%ebp)

c xdead beef
v

v

Binghamton

University

CS-220

Spring 2016

While Loops

int myfunc(int a,int b) {
int c;
while(a<10) {

c+=b;
a--;

}
return c;

}

Binghamton

University

CS-220

Spring 2016

gcc -m32 -O0 -S prog.c

int myfunc(int a,int b) {

int c;

while(a<10) {

c+=b;

a--;

}

return c;

}

myfunc:

pushl %ebp

movl %esp, %ebp

subl $16, %esp

jmp .L2

.L3:

movl 12(%ebp), %eax

addl %eax, -4(%ebp)

subl $1, 8(%ebp)

.L2:

cmpl $9, 8(%ebp)

jle .L3

movl -4(%ebp), %eax

leave

ret

Binghamton

University

CS-220

Spring 2016

While Condition

int myfunc(int a,int b) {

int c;

while(a<10) {

c+=b;

a--;

}

return c;

}

myfunc:

pushl %ebp

movl %esp, %ebp

subl $16, %esp

jmp .L2

.L3:

movl 12(%ebp), %eax

addl %eax, -4(%ebp)

subl $1, 8(%ebp)

.L2:

cmpl $9, 8(%ebp)

jle .L3

movl -4(%ebp), %eax

leave

ret

Memory

b x0000 0004

a x0000 0003

(%ebp)

c xdead beef

v

Binghamton

University

CS-220

Spring 2016

Loop Body

int myfunc(int a,int b) {

int c;

while(a<10) {

c+=b;

a--;

}

return c;

}

myfunc:

pushl %ebp

movl %esp, %ebp

subl $16, %esp

jmp .L2

.L3:

movl 12(%ebp), %eax

addl %eax, -4(%ebp)

subl $1, 8(%ebp)

.L2:

cmpl $9, 8(%ebp)

jle .L3

movl -4(%ebp), %eax

leave

ret

Memory

b x0000 0004

a x0000 0003

(%ebp)

c xdead beef

v

v

Binghamton

University

CS-220

Spring 2016

Translating C to x86: while

while (cond) {
loop-block

}

cond

loop-block

start
…

jmp L6

.L5:

… ; loop block

.L6:

cmpl …; condition

jxx .L5

…

end

true false

Binghamton

University

CS-220

Spring 2016

For Loops

int myfunc(int a,int b) {
int c;
for(c=0;c<a;c++) {

b=b+a;
}
return b;

}

Binghamton

University

CS-220

Spring 2016

gcc -m32 -O0 -S prog.c

int myfunc(int a,int b) {

int c;

for(c=0;c<a;c++) {

b=b+a;

}

return b;

}

myfunc:

pushl %ebp

movl %esp, %ebp

subl $16, %esp

movl $0, -4(%ebp)

jmp .L2

.L3:

movl 8(%ebp), %eax

addl %eax, 12(%ebp)

addl $1, -4(%ebp)

.L2:

movl -4(%ebp), %eax

cmpl 8(%ebp), %eax

jl .L3

movl 12(%ebp), %eax

leave

ret

Binghamton

University

CS-220

Spring 2016

For Statement

int myfunc(int a,int b) {

int c;

for(c=0;c<a;c++) {

b=b+a;

}

return b;

}

myfunc:

pushl %ebp

movl %esp, %ebp

subl $16, %esp

movl $0, -4(%ebp)

jmp .L2

.L3:

movl 8(%ebp), %eax

addl %eax, 12(%ebp)

addl $1, -4(%ebp)

.L2:

movl -4(%ebp), %eax

cmpl 8(%ebp), %eax

jl .L3

movl 12(%ebp), %eax

leave

ret

Memory

b x0000 0004

a x0000 0003

(%ebp)

c xdead beef

v

v

Binghamton

University

CS-220

Spring 2016

Translating C to x86: while

for(init;cond;incr) {
loop-block

}

cond

loop-block

start
…

... ; init

jmp L6

.L5:

… ; loop block

… ; incr

.L6:

cmpl …; condition

jxx .L5

…

end

true false

init

incr

Binghamton

University

CS-220

Spring 2016

Switch Statements

int myfunc(int a,int b) {

int c;

switch(a) {

case 10 : c=a; break;

case 11: b++;

case 12:

case 13: c=a+b; break;

case 14: c=a*b; break;

case 15: c=a+2; break;

default: c=0;

}

return c;

}

Binghamton

University

CS-220

Spring 2016

gcc -m32 -O0 -S progSwitch.c

int myfunc(int a,int b) {

int c;

switch(a) {

case 10 : c=a; break;

case 11: b++;

case 12:

case 13: c=a+b; break;

case 14: c=a*b; break;

case 15: c=a+2; break;

default: c=0;

}

return c;

}

movl 8(%ebp), %eax

subl $10, %eax

cmpl $5, %eax

ja .L2

movl .L8(,%eax,4),
%eax

jmp *%eax

.L8:

.long .L3

.long .L4

.long .L5

.long .L5

.long .L6

.long .L7

.L3:

movl 8(%ebp), %eax

movl %eax, -4(%ebp)

jmp .L9

.

.L4:

addl $1, 12(%ebp)

.L5:

movl 12(%ebp), %eax

movl 8(%ebp), %edx

leal (%edx,%eax), %eax

movl %eax, -4(%ebp)

jmp .L9

.L6:

movl 8(%ebp), %eax

imull 12(%ebp), %eax

movl %eax, -4(%ebp)

jmp .L9

.L7:

movl 8(%ebp), %eax

addl $2, %eax

movl %eax, -4(%ebp)

jmp .L9

.L2:

movl $0, -4(%ebp)

.L9:

Binghamton

University

CS-220

Spring 2016

Case Blocks

int myfunc(int a,int b) {

int c;

switch(a) {

case 10 : c=a; break;

case 11: b++;

case 12:

case 13: c=a+b; break;

case 14: c=a*b; break;

case 15: c=a+2; break;

default: c=0;

}

return c;

}

movl 8(%ebp), %eax

subl $10, %eax

cmpl $5, %eax

ja .L2

movl .L8(,%eax,4), %eax

jmp *%eax

.L8:

.long .L3

.long .L4

.long .L5

.long .L5

.long .L6

.long .L7

.L3:

movl 8(%ebp), %eax

movl %eax, -4(%ebp)

jmp .L9

.

.L4:

addl $1, 12(%ebp)

.L5:

movl 12(%ebp), %eax

movl 8(%ebp), %edx

leal (%edx,%eax), %eax

movl %eax, -4(%ebp)

jmp .L9

.L6:

movl 8(%ebp), %eax

imull 12(%ebp), %eax

movl %eax, -4(%ebp)

jmp .L9

.L7:

movl 8(%ebp), %eax

addl $2, %eax

movl %eax, -4(%ebp)

jmp .L9

.L2:

movl $0, -4(%ebp)

.L9:

Binghamton

University

CS-220

Spring 2016

Switch “Jump Table”

int myfunc(int a,int b) {

int c;

switch(a) {

case 10 : c=a; break;

case 11: b++;

case 12:

case 13: c=a+b; break;

case 14: c=a*b; break;

case 15: c=a+2; break;

default: c=0;

}

return c;

}

movl 8(%ebp), %eax

subl $10, %eax

cmpl $5, %eax

ja .L2

movl .L8(,%eax,4),
%eax

jmp *%eax

.L8:

.long .L3

.long .L4

.long .L5

.long .L5

.long .L6

.long .L7

.L3:

movl 8(%ebp), %eax

movl %eax, -4(%ebp)

jmp .L9

.

.L4:

addl $1, 12(%ebp)

.L5:

movl 12(%ebp), %eax

movl 8(%ebp), %edx

leal (%edx,%eax), %eax

movl %eax, -4(%ebp)

jmp .L9

.L6:

movl 8(%ebp), %eax

imull 12(%ebp), %eax

movl %eax, -4(%ebp)

jmp .L9

.L7:

movl 8(%ebp), %eax

addl $2, %eax

movl %eax, -4(%ebp)

jmp .L9

.L2:

movl $0, -4(%ebp)

.L9:

Binghamton

University

CS-220

Spring 2016

L8 @ x080484d0 – “Jump Table”

Location Label Index “a” value Value Points to

x080484d0 .L3 0 10 x080483ae case 10

x080484d4 .L4 1 11 x080483b6 case 11

x080484d8 .L5 2 12 x080483ba case 13

x080484dc .L5 3 13 x080483ba case 13

x080484e0 .L6 4 14 x080483c8 case 14

x080484e4 .L7 5 15 x080483d4 case 15

Binghamton

University

CS-220

Spring 2016

Evaluating the Switch

int myfunc(int a,int b) {

int c;

switch(a) {

case 10 : c=a; break;

case 11: b++;

case 12:

case 13: c=a+b; break;

case 14: c=a*b; break;

case 15: c=a+2; break;

default: c=0;

}

return c;

}

movl 8(%ebp), %eax

subl $10, %eax

cmpl $5, %eax

ja .L2

movl .L8(,%eax,4), %eax

jmp *%eax

.L8:

.long .L3

.long .L4

.long .L5

.long .L5

.long .L6

.long .L7

.L3:

movl 8(%ebp), %eax

movl %eax, -4(%ebp)

jmp .L9

.

.L4:

addl $1, 12(%ebp)

.L5:

movl 12(%ebp), %eax

movl 8(%ebp), %edx

leal (%edx,%eax), %eax

movl %eax, -4(%ebp)

jmp .L9

.L6:

movl 8(%ebp), %eax

imull 12(%ebp), %eax

movl %eax, -4(%ebp)

jmp .L9

.L7:

movl 8(%ebp), %eax

addl $2, %eax

movl %eax, -4(%ebp)

jmp .L9

.L2:

movl $0, -4(%ebp)

.L9:

Binghamton

University

CS-220

Spring 2016

Indirect Jump

jmp *<reference>

• <reference> : A location/register that contains the target

• May also see table addressing notation: jmp *.L4(,%eax,4)
• Use %eax as index into a table starting at L4

• Each entry in the table is 4 bytes wide

• Use the %eaxth entry as the target for the jump

